Term 
        
          
Global Tectonics 
Earth’s Magnetism 
   |  
          | 
        
        
        Definition 
        
        Earth‘s magnetic   
field is what would   
be expected if there   
were a large bar   
magnet located at   
the center of the Earth.   
  
The magnetic field   
is composed of lines   
of force as shown in   
the diagram here. 
  
The magnetic field is thought   
to be caused by electrical   
currents generated by   
flowing iron in the outer core.  
  
Theory says that the   
magnetic poles should   
remain close to the pole of   
rotation of the earth.  
  
A compass needle points   
along the lines of force of the   
magnetic field.  
  
The lines intersect the surface   
at various angles that depend   
on position on the surface.   
This angle is called the   
magnetic inclination.   
Inclination is 0o at the   
magnetic equator & 90o at   
the magnetic poles. 
  
By measuring the inclination   
& the angle to the magnetic   
pole, one can tell position on   
the Earth relative to the   
magnetic poles.  
  
  
  
  
  
  
  
  
 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Earths Magnetism 
Curie Temperature 
  
   |  
          | 
        
        
        Definition 
        
          
In the 1950s it was discovered that when magnetic minerals   
cool below the Curie Temperature, domains within the   
magnetic mineral take on an orientation parallel to any external   
magnetic field present at the time they cool below this   
temperature. 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
History of Earths Magnetic field 
Paleomagnetism  
  
   |  
          | 
        
        
        Definition 
        
          
Initial studies of the how   
the position of the Earth‘s   
magnetic pole varied with   
time were conducted in   
Europe. These studies   
showed that the magnetic   
pole had apparently   
moved through time.  
  
When similar measurements   
were made on rocks of   
various ages in North   
America, however, a   
different path of the   
magnetic pole was found.  
  
This either suggested that (a) the Earth has had more than one   
magnetic pole at various times in the past (not likely), or (b) that   
the different continents have moved relative to each other over   
time.  
  
Studies of ancient pole   
positions for other   
continents confirmed   
the latter hypothesis,   
and seemed to confirm   
the theory of   
Continental Drift.  
  
  
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Sea‐Floor Spreading 
  
   |  
          | 
        
        
        Definition 
        
          
The purpose was to   
understand the   
topography of the   
sea floor to find   
hiding places for   
submarines.   
The topographic   
studies involved   
measuring the depth   
to the sea floor.  
  
These studies revealed the presence of two important   
topographic features of the ocean floor:  
Oceanic Ridges  & Oceanic Trenches 
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
        Global Tectonics 
Sea- floor spreading 
Oceanic Ridges 
   |  
          | 
        
        
        Definition 
        
          
 long sinuous ridges that occupy the middle of   
the Atlantic Ocean and the eastern part of the Pacific Ocean. 
  
  
  
These are oceanic ridges where new oceanic lithosphere is   
created by upwelling mantle that melts, resulting in basaltic   
magmas which intrude and erupt at the oceanic ridge to create   
new oceanic lithosphere and crust.  
 
  
  
  
  
Because the oceanic ridges are areas of young crust, there is   
very little sediment accumulation on the ridges.   
Sediment thickness increases in both directions away of the   
ridge, and is thickest where the oceanic crust is the oldest. 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Sea Floor Spreading 
Oceanic Trenches 
   |  
          | 
        
        
        Definition 
        
          
 deep trenches along the margins of   
continents, particularly surrounding the Pacific Ocean. 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Sea Floor Spreading 
magnetic   
anomalies 
   |  
          | 
        
        
        Definition 
        
          
The records from the magnetometers revealed magnetic   
anomalies on the sea floor, with magnetic high areas running   
along the oceanic ridges, and parallel bands of alternating high   
and low magnetism on either side of the oceanic ridges. 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Sea-Floor spreading 
Reversals of the Earth‘s Magnetic Field  
   |  
          | 
        
        
        Definition 
        
          
By dating the rocks by radiometric   
techniques and correlating the   
reversals throughout the world   
they were able to establish the   
magnetic time scale. 
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Sea‐Floor Spreading 2 
   |  
          | 
        
        
        Definition 
        
          
As this magma cooled it   
took on the magnetism   
of the magnetic field at   
the time.   
When the polarity of the   
field changed new crust   
and lithosphere created   
at the ridge would take   
on the  different polarity.   
This hypothesis led to   
the theory of sea floor   
spreading.  
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Divergent Plate boundaries 
   |  
          | 
        
        
        Definition 
        
          
where plates move away from   
each other.   
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Convergent Plate Boundaries 
   |  
          | 
        
        
        Definition 
        
          
where plates move toward   
each other.   
  
When a plate of dense oceanic lithosphere moving in one direction collides with a plate moving in the opposite direction, one of the plates subducts beneath the other. Where this occurs an oceanic trench forms on the sea floor and the sinking plate becomes a subduction zone. The Wadati-Benioff Zone, a zone of earthquakes located along the subduction zone, identifies a subduction zone. The earthquakes may extend down to depths of 700 km before the subducting plate heats up and loses its ability to deform in a brittle fashion. 
As the oceanic plate subducts, it begins to heat up causing the release water of water into the overlying mantle asthenosphere. The water reduces the melting temperature and results in the production of magmas. These magmas rise to the surface and create a volcanic arc parallel to the trench. 
If the subduction occurs beneath oceanic lithosphere, an island arc is produced at the surface (such as the Japanese islands, the Aleutian Islands, the Philippine islands, or the Caribbean islands 
If the subduction occurs beneath continental crust, a continental volcanic arc is produced (such as the Cascades of the western U.S., or the Andes mountains of the South America)  |  
          | 
        
        
         | 
        
        
        Term 
        
          
Global Tectonics 
Transform Plate Boundaries, 
   |  
          | 
        
        
        Definition 
        
          
where plates slide past one   
another.   
Where lithospheric plates slide past one another in a horizontal manner, a transform fault is created. Earthquakes along such transform faults are shallow focus earthquakes. 
Most transform faults occur where oceanic ridges are offset on the sea floor. Such offset occurs because spreading takes place on the spherical surface of the Earth, and some parts of a plate must be moving at a higher relative velocity than other parts One of the largest such transform boundaries occurs along the boundary of the North American and Pacific plates and is known as the San Andreas Fault. Here the transform fault cuts through continental lithosphere 
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
          
subducts- GLOBAL TECTONICS 
   |  
          | 
        
        
        Definition 
        
          
When a plate of dense oceanic lithosphere moving in one   
direction collides with a plate moving in the opposite direction,   
one of the plates subducts beneath the other. 
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Where this occurs an oceanic trench forms on the sea floor   
and the sinking plate becomes a subduction zone. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 A zone of earthquakes – the   
Wadati‐Benioff zone  ‐ that   
extend downward along the   
subduction zone, identifies   
subduction zones.  
The earthquakes may   
extend down to depths of   
700 km before the   
subducting plate heats up   
and loses its ability to   
deform in a brittle fashion. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If the subduction occurs beneath oceanic lithosphere, an   
island arc is produced at the surface (such as the Japanese   
islands, the Aleutian Islands, the Philippine islands, or the   
Caribbean islands  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If the subduction occurs beneath continental crust, a continental   
volcanic arc is produced (such as the Cascades of the western   
U.S., or the Andes mountains of the South America)  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 This will break the   
rocks up into a   
chaotic mixture of   
broken, jumbled, and   
thrust faulted rock   
known as an   
accretionary prism. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Where lithospheric plates slide past one another in a   
horizontal manner, a transform fault is created.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 occur at points where thee plates meet. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
          
What Causes Plate Tectonics?  
  
   |  
          | 
        
        
        Definition 
        
          
From seismic wave velocities we know that the asthenosphere   
behaves in ductile manner, that is even though it is solid it can   
flow under stress and behave like a liquid.   
If this is the case, then it can also convect.   
Convection is a mode of heat transfer wherein the heat moves   
with the material.   
Convection is caused when material that occurs at a deeper   
level is heated to the point where it expands and becomes less   
dense than the material above it.   
  
When this occurs, the hot   
less dense material rises.   
Rising hot material will   
eventually cool and   
become denser than its   
surroundings.   
This cool dense material   
must then sink.   
This gives rise to convection cells, with hot rising currents and   
cool descending currents. 
  
  
If the asthenosphere is in fact moving as a result of convection,   
then convection could be the mechanism responsible for plate   
tectonics. Hot rising currents would occur beneath oceanic   
ridges. 
  
Magma intruding into the ridge would push lithosphere apart   
at the ridge.  
As the new lithosphere cools, it will slide off the topographic   
high that results from the upwelling of the mantle and will   
eventually become cold and dense.  
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Developed societies depend on mineral resources.  
 |  
          | 
        
        
        Definition 
        
        
 Metals – Iron, copper, lead, zinc, nickel, aluminum, etc. 
 Non‐metals – Gypsum, limestone, aggregate, clay 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Geologic definition of a mineral is specialized:  
 |  
          | 
        
        
        Definition 
        
        
 Naturally occurring.  
Solid.  
Formed geologically.  
Definite chemical   
composition.   
Ordered atomic   
arrangement.   
Mostly inorganic.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Noble gases have completely filled outer shells, so they are   
stable. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 The most common minerals are those based on Si and O:  the   
Silicates.   
Silicates are based on SiO4‐4tetrahedron. 
 Silica tetrahedralink together by sharing oxygens.  
More shared oxygen = lower Si:Oratio; governs…  
Melting temperature.  
Mineral structure and cationspresent.   
Susceptibility to chemical weathering.   
 Tetrahedra share no oxygens ‐ linked by cations. 
 2‐dimensional sheets of linked tetrahedra.  
Characterized by one direction of perfect cleavage.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Mica Group 
silicate minerals 
 |  
          | 
        
        
        Definition 
        
        
  Biotite (dark) and Mucsovite (light). 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Clay Mineral Group 
silicate minerals 
 |  
          | 
        
        
        Definition 
        
        
  Feldspar weathering residue; tiny. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Streak color same as mineral.   
Magnetite – Black mineral; black streak. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Streak color different than mineral.  
Chromite – Black mineral; greenish‐brown streak.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 The way a mineral scatters light.  
Two subdivisions.    
Metallic – Looks like a metal.  
Nonmetallic.  
Vitreous (glassy).  
Satiny.  
Silky.  
Resinous.  
Pearly.  
Earthy (dull).   
Adamantine (brilliant).  
Quartz – Vitreous luster  
Quartz – Vitreous luster 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 
 Tendency to break along planes of weakness.   
Cleavage produces flat, shiny surfaces.  
Described by number of planes and their angles.  
Sometimes mistaken for crystal habit.    
Cleavage is through‐going; often forms parallel “steps.”  
Crystal habit is only on external surfaces.   
1, 2, 3, 4, and 6 cleavages possible.   
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Talc, Graphite  
2. Gypsum  
3. Calcite  
4. Fluorite  
5. Apatite  
6. Orthoclase   
7. Quartz  
8. Topaz  
9. Corundum  
10. Diamond 
 |  
          | 
        
        
         | 
        
        
        Term 
        
          
Chemical composition 
gasses in magma 
   |  
          | 
        
        
        Definition 
        
          
Mostly H2O (water vapor) & some CO2 (carbon dioxide)  
Minor amounts of Sulfur, Chlorine, & Fluorine gases  
1. Basaltic or Gabbroic- high in fe, mg, ca low in k, na 
2. Andesitic or Dioritic- intermediate in fe mg ca na k 
3. Rhyolitic or Granitic- low in fe mg ca high in k na 
   |  
          | 
        
        
         | 
        
        
        Term 
        
        
 The amount of gas 
gasses in magmas 
 |  
          | 
        
        
        Definition 
        
        
 Related to the chemical composition of the magma –  
Felsic magmas usually have higher gas contents than   
mafic magmas. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
Temperature increases with depth in the earth along the   
geothermal gradient.  
Under normal conditions, the geothermal gradient is not high   
enough to melt rocks, and thus most of the Earth is solid.  
 
   |  
          | 
        
        
         | 
        
        
        Term 
        
        
 The earth is hot inside due to 
 |  
          | 
        
        
        Definition 
        
        
 heat left over from the   
original accretion process  
heat released by sinking   
of materials to form the   
core  
heat released by the   
decay of radioactive   
elements. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
Temperature  
Solid Liquid  
With No (H2O) or CO2 present  ‐  
melting occurs at a single   
temperature at any given pressure.    
Melting temperature increases   
with increasing pressure or depth   
in the Earth. Called dry melting.  
temperatures   
increase with increasing   
pressure, except range of   
temperature over which there   
exists a partial melt.   
Solid  
Liquid  
Crystals  
Liquid  
+  
(Partial Melt)  
  
 
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
Solid +  
Vapor Liquid +  
Vapor  
With H2O or CO2 present melting   
takes place at a single temperature   
at any given pressure, but first   
decreases with increasing   
pressure.   Called wet melting. 
 range of   
temperature range over   
which partial melting   
occurs.    
Temperature of   
beginning of melting first   
decreases with   
increasing pressure or   
depth, then at high   
pressure or depth   
melting temperatures   
again begin to riseTemperature  
Solid +  
Vapor Liquid +  
Vapor  
Liquid  
+  
Crystals  
(Partial Melt)  
+  
Vapor 
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
 If hot solid mantle material rises to lower   
pressure or depth, carrying its heat with it,  the new local   
geothermal gradient could become higher than the initial melting   
temperature and a partial melt will form. Thus, generation of magma in these three environments is likely   
caused by decompression melting.   
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 When magmas   
generated by some other   
mechanism intrude into crust, they   
bring with them heat. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If water or carbon dioxide are added to rock, the   
melting temperature is lowered.  
If the addition takes place deep in the earth where the temperature   
is already high, the lowering of melting temperature could cause the   
rock to partially melt to generate magma. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Water introduced at subduction zones. 
 |  
          | 
        
        
        Definition 
        
        
 Water present in the pore spaces of the subducting sea floor or in   
minerals ‐ hornblende, biotite, or clay minerals ‐ released by the rising   
temperature and then moves into overlying Mantle.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Magmas vary chemically due to…  
 |  
          | 
        
        
        Definition 
        
        
 Initial source rock compositions.  
Partial melting.  
Assimilation.  
Mixing  
Fractional crystallization. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Initial Composition of Magma  
 |  
          | 
        
        
        Definition 
        
        
 The initial composition of the   
magma is dictated by the   
composition of the source rock and   
the degree of partial melting.  
In general, melting of a mantle   
source (garnet peridotite) results in   
mafic/basaltic magmas.  
Melting of crustal sources yields   
more siliceous magmas.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Processes that operate during transportation   
toward the surface or during storage in the   
crust can alter the chemical composition of the   
magma.  
These processes are referred to as magmatic   
differentiation and include assimilation,   
mixing, and crystal fractionation.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 As magma passes   
through cooler rock it may   
partially melt the surrounding   
rock and incorporate this melt   
into the magma.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  If two magmas with different   
compositions happen to come in contact   
with one another, they could mix together.  
The mixed magma will have a composition   
somewhere between that of the original   
two magma compositions.  
Evidence for mixing is often preserved in   
the resulting rocks.  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Fractional Crystallization 
  
 |  
          | 
        
        
        Definition 
        
        
  When magma crystallizes it does so   
over a range of temperature.   
Each mineral begins to crystallize at a different temperature, and   
if these minerals are somehow removed from the liquid, the   
liquid composition will change.  
The processes is called magmatic differentiation by Fractional Crystallization. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Chemical Composition of Magmas 
 |  
          | 
        
        
        Definition 
        
        
 Crystals can be removed by a variety of   
processes.   
If the crystals are more dense than the   
liquid, they may sink.   
If they are less dense than the liquid   
they will float.   
If liquid is squeezed out by pressure,   
then crystals will be left behind.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 As a mafic/basaltic magma is cooled Olivine and Ca‐rich plagioclase   
crystallize first.  
Upon further cooling, Olivine reacts with the liquid to produce   
pyroxene and Ca‐rich plagioclase react with the liquid to produce   
less Ca‐rich plagioclase. 
 But, if the olivine and Ca‐rich plagioclase are removed from the   
liquid by crystal fractionation, then the remaining liquid will be   
more SiO2 rich.  
If process continues, an original mafic/basaltic magma changes to   
andesite magma then a rhyolite magma with falling temperatur 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
favored by low gas content and low   
viscosity magmas (basaltic to andesitic magmas and sometimes   
rhyolitic magma).  
Usually begin with fire fountains due to release of dissolved   
gases.  
- Usually begin with fire fountains due to release of dissolved gases 
  
- Produce lava flows on surface 
  
- Produce Pillow lavas if erupted beneath water
 
 
 
  
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If eruption column collapses a   
pyroclastic flow may occur,   
wherein gas and tephra rush   
down the flanks of the volcano   
at high speed. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 This is the most dangerous   
type of volcanic eruption. The   
deposits that are produced are   
called ignimbrites. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 When magma intrudes it usually affects the surrounding rock and   
is also affected by the surrounding rock. It may metamorphose   
the surrounding rocks or cause hydrothermal alteration. The   
magma itself may also cool rapidly near the contact with the   
surrounding rock and thus show a chilled margin next to the   
contact. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 It may also incorporate pieces of the surrounding rocks without   
melting them. These incorporated pieces are called xenoliths  
(foreign rocks).   
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Dikes are small (<20 m wide) shallow intrusions that show a   
discordant relationship to the rocks in which they   
intrude. Discordant means that they cut across preexisting   
structures. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Sills are also small (<50 m thick) shallow intrusions that show a   
concordant relationship with the rocks that they intrude. Sills   
usually are fed by dikes, but these may not be exposed in the field. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Laccoliths are somewhat large intrusions that result in uplift and   
folding of the preexisting rocks above the intrusion. They are also   
concordant types of intrusions 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Plutons are large intrusive bodies, of any shape that intrude in   
replace rocks in an irregular fashion. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Stocks are smaller bodies that are likely fed from deeper level   
batholiths. Stocks may have been feeders for volcanic eruptions,   
but because large amounts of erosion are required to expose a   
stock or batholith, the associated volcanic rocks are rarely exposed. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If multiple intrusive events   
occur in the same part of the   
crust, the body that forms is   
called a batholith.  
Several large batholiths occur in   
the western U.S. ‐ The Sierra   
Nevada Batholith, the Coast   
Range Batholith, and the Idaho   
Batholith, for example 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Fast cooling on the surface   
results in many small crystals   
or quenching to a glass. Gives   
rise to aphanitic texture  
(crystals cannot be   
distinguished with the naked   
eye) 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Slow cooling at depth in the   
earth results in fewer much   
larger crystals, gives rise to   
phaneritic texture. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  develops   
when slow cooling is followed   
by rapid cooling. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 larger crystals, matrix or   
groundmass = smaller crystals 
 |  
          | 
        
        
         | 
        
        
        Term 
        
          
Classification of Igneous Rocks  
   |  
          | 
        
        
        Definition 
        
          
Igneous rocks are classified on the basis of texture and   
chemical composition, usually as reflected in the minerals that   
from due to crystallization.  
You will explore the classification of igneous rocks in the   
laboratory portion of this course. 
 Basalts, Andesites,   
and Rhyolites are   
types of volcanic   
rock distinguished   
on the basis of their   
mineral assemblage   
and chemical   
compostion.  
These rocks tend to   
be fine grained to   
glassy or   
porphyritic.  
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  light colored and light   
weight rock consisting of   
mostly holes (vesicles) that   
were once occupied by gas,   
Usually rhyolitic or andesitic. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  rock filled with holes   
(like Swiss cheese) or vesicles   
that were once occupied by   
gas. Usually basaltic and   
andesitic. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 hot, broken   
fragments. Result from   
explosively ripping apart of   
magma.   
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Loose assemblages of   
pyroclasts called tephra.   
Depending on size, tephra can   
be classified as bombs. lapilli,   
or ash. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Rock formed by accumulation and cementation of tephra called a   
pyroclastic rock or tuff. Welding, compaction and deposition of   
other grains cause tephra (loose material) to be converted in   
pyroclastic rock.   
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
Such large volume eruptions can have affects on the oceans   
because they change the shape of ocean floor and cause a rise in   
sea level, that sometimes floods the continents.  
The plateaus form obstructions which can drastically change   
ocean currents.  
These changes in the ocean along with massive amounts of gas   
released by the magmas can alter climate and have drastic   
effects on life on the planet. 
 In the past, large volumes of mostly basaltic magma have   
erupted on the sea floor to form large volcanic plateaus, such as   
the Ontong Java Plateau in the eastern Pacific. 
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
An excellent example of a   
continental rift valley is   
the East African Rift. 
Rising mantle beneath a continent can result in extensional   
fractures in the continental crust to form a rift valley.  
As the mantle rises it undergoes partial melting by decompression,   
resulting in the production of basaltic magmas which may erupt as   
flood basalts on the surface.  
Melts that get trapped in   
the crust can release heat   
resulting in melting of the   
crust to form rhyolitic  
magmas that can also   
erupt at the surface in the   
rift valley.  
  
  
   |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Divergent Plate Boundaries 
 |  
          | 
        
        
        Definition 
        
        
 Occasionally a hot spot is coincident with an oceanic ridge. In   
such a case, the hot spot produces larger volumes of magma   
than normally occur at ridge and thus build a volcanic island on   
the ridge. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 A hot spot located beneath a continent can result in heat   
transfer melting of the continental crust to produce large   
rhyolitic volcanic centers and plutonic granitic plutons below. 
 A good example of a   
continental hot spot is at   
Yellowstone in the   
western U.S.  
As the overriding plate moves over the hot spot, the volcano   
moves off of the hot spot and a new volcano forms over the hot   
spot.  
This produces a hot spot   
track consisting of lines   
of extinct volcanoes   
leading to the active   
volcano at the hot spot.  
 As discussed previously, hot spots are places are places where   
hot mantle ascends toward the surface as plumes of hot rock.  
Decompression melting in these rising plumes results in the   
production of magmas which erupt to form a volcano on the   
surface or sea floor, eventually building a volcanic island. 
 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Convergent Plate Boundaries 
 |  
          | 
        
        
        Definition 
        
        
 Subduction introduces water into the mantle above the   
subduction causing flux melting to produce basaltic magmas.  
These rise toward the surface differentiating by assimilation and   
crystal fractionation to produce andesitic & rhyolitic magmas that   
erupt to form Island Arcs and Continental Margin arcs.  
Magmas that intrude   
beneath the arcs can cause   
crustal melting and form   
plutons and batholiths of   
diorite and granite  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Distribution of Igneous Activity 
 |  
          | 
        
        
        Definition 
        
        
 Igneous activity is currently taking place as it has in the past in   
various tectonic settings. These include diverging and   
converging plate boundaries, hot spots, and rift valleys.  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Classification of Igneous Rocks 
 |  
          | 
        
        
        Definition 
        
        
 Coarse grained rocks,   
formed at deeper   
levels in the earth   
include gabbros,   
diorites, and   
granites.  
These are chemically   
equivalent to basalts,   
andesites, and   
rhyolites.  
Shallow intrusions like dikes and   
sills are usually fine grained and   
sometimes porphyritic because   
cooling rates are similar to those   
of extrusive rocks.  
Classification is similar to the   
classification for   
volcanic/extrusive rocks. 
 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Earth is covered by a thin “veneer” of sediment.  
The veneer caps igneous and metamorphic “basement.”   
Sediment cover varies in thickness from 0 to 20 km.  
Thinner (or missing) where igneous and metamorphic   
rocks outcrop.  
Thicker in sedimentary basins.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Breaks pre‐existing rock into small fragments   
or new minerals. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        | in order to make sediment and sedimentary rocks, steps... |  
          | 
        
        
        Definition 
        
        
 Weathering – Breaks pre‐existing rock into small fragments   
or new minerals.  
Transportation of the sediments to a sedimentary basin.  
Deposition of the sediment  
Burial and Lithification to make sedimentary rock. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Geologists recognize two categories of weathering.  
  
 |  
          | 
        
        
        Definition 
        
        
 Physical Weathering ‐ Mechanical breakage and   
disintegration of rocks.   
Chemical Weathering ‐ Decomposition by reaction with   
water.   
Although discussed as separate processes, both work together   
to break down rocks and minerals to smaller fragments or to   
minerals more stable near the Earth‘s surface.  
Both types are a response to the low pressure, low   
temperature, and water and oxygen rich nature of the earth’s   
surface.  
  
 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
          
Mechanical breakup; doesn’t change mineral makeup.  
Creates broken fragments or “detritus.”  
Detrital fragments classified by size.  
Coarse‐grained – Boulders, cobbles, and pebbles.  
Medium‐grained – Sand‐sized.  
Fine‐grained – Silt and clay (mud).  
disintegration of rocks and minerals by a physical or mechanical process 
   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Joints are regularly spaced fractures   
or cracks in rocks  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Igneous plutons crack in onionlike “exfoliation” layers. 
 |  
          | 
        
        
        Definition 
        
        
 These layers break off as sheets that slide off of a pluton.   
Over time, this process creates domed remnants.     
Examples:  Half‐Dome (Ca.) and Stone Mountain (Ga.).  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  As water percolates through fractures and   
pore spaces it may contain ions that precipitate to form   
crystals. As these crystals grow they may exert an outward   
force that can expand or weaken rocks.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Although daily heating and   
cooling of rocks  do not seem   
to have an effect, sudden   
exposure to high temperature,   
such as in a forest or grass fire   
may cause expansion &   
eventual breakage of rock. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Plant roots can extend into fractures and   
grow, causing expansion of the fracture.  Growth of plants can   
break rock.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Animals burrowing or moving through cracks   
can break rock.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  Upon   
freezing, there is an    
increase in the volume of the   
water.  As the water freezes   
it expands and exerts a force   
on its surroundings.   
Frost wedging is more   
prevalent at high altitudes   
where there may be many   
freeze‐thaw cycles.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Many rocks & minerals form at higher Pressure and Temperature.    
At the surface of the Earth, conditions are very different from   
those under which they originally formed.    
Among the conditions present near the Earth‘s surface that are   
different from those deep within the Earth are:  
• Lower Temperature (Near the surface T = 0 ‐ 50oC)  
• Lower Pressure (Near the surface P = 1 ‐ several hundred atm)  
• Higher free water   
• Higher free oxygen  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        | chemical weathering- most to least stable |  
          | 
        
        
        Definition 
        
        
 ron oxides  
Aluminum oxides &  Quartz*  
Clay Minerals  
Muscovite*  
Alkali Feldspar*  
Biotite*  
Amphiboles*  
Pyroxenes*  
Ca‐rich plagioclase*  
Olivine*  
Most Stable  
Least Stable  
*igneous minerals  
The higher the temperature of crystallization, the less stable are   
these minerals at the low temperature near the Earth‘s surface. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        | main agents responsible for chemical weathering reactions |  
          | 
        
        
        Definition 
        
        
 The main agent responsible for chemical weathering reactions   
is water and weak acids formed in water.  
An acid is solution that has abundant free H+ ions.  
The most common weak acid that occurs in surface waters is   
carbonic acid.  
Carbonic acid is produced in rainwater by reaction of the   
water with carbon dioxide (CO2) gas in the atmosphere.  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Types of Chemical Weathering Reactions  
hydrolysis 
 |  
          | 
        
        
        Definition 
        
        
 H+ or OH ‐ replaces an ion in the mineral.    
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Types of Chemical Weathering Reactions  
Leaching 
 
 |  
          | 
        
        
        Definition 
        
        
  ions are removed by dissolution into water.  In   
the example above we say that the K + ion was leached.  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        types of chemical weathering reactions 
 Oxidation 
 |  
          | 
        
        
        Definition 
        
        
  Since free oxygen (O2) is more common near the    
surface, it may react with minerals to change the oxidation state of   
an ion.  This is more common in Fe (iron) bearing minerals, since Fe   
can have several oxidation states, Fe, Fe+2, Fe+3.    
Deep in the Earth the most common oxidation state of Fe is Fe+2. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Types of Chemical Weathering Reactions  
Dehydration 
 
 |  
          | 
        
        
        Definition 
        
        | removal of H2O or OH‐ ion from a mineral. |  
          | 
        
        
         | 
        
        
        Term 
        
        types chemical weath rctn 
 Complete Dissolution 
 |  
          | 
        
        
        Definition 
        
        
  all of the mineral is completely dissolved   
by the water.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 types Chemical Weathering Reactions 
Living Organisms 
 
 |  
          | 
        
        
        Definition 
        
        
  Organisms like plants, fungi, lichen, and bacteria   
can secrete organic acids that can cause dissolution of minerals to   
extract nutrients. The role of microorganisms like bacteria has only   
recent been discovered.   
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Interaction of Physical and Chemical Weathering  
 |  
          | 
        
        
        Definition 
        
        
 Since chemical weathering occurs on the surface, the water   
and acids that control chemical weathering require access to   
a surface.  
Fracturing the rocks, as occurs during jointing, increases the   
surface area that can be exposed to weathering and also   
provides pathways for water to enter the rock.  
As chemical weathering proceeds, new softer minerals, like   
oxides or clay minerals, will create zones of weakness in rock   
that will allow for further physical weathering.  
Dissolution of minerals will remove material that holds the   
rock together, thus making it weaker. 
 If joints and fractures form a 3‐dimensional network, the rock   
will be broken into cube like pieces separated by the   
fractures. Water can penetrate more easily along these   
fractures, and each of the cube‐like pieces will begin to   
weather inward. The rate of weathering will be greatest along   
the corners of each cube, followed by the edges, and finally the   
faces of the cubes.  
As a result the cube will weather into a spherical shape, with   
unweathered rock in the center and weathered rock toward   
the outside. Such progression of weathering is referred to as   
spheroidal weathering 
 
 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Factors that Influence Weathering  
Rock Type and Structure 
 |  
          | 
        
        
        Definition 
        
        
 Different rocks are composed of different minerals, and each   
mineral has a different susceptibility to weathering.    
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 If there are large   
contrasts in the   
susceptibility to   
weathering within a large   
body of rock, the more   
susceptible parts of the   
rock will weather faster   
than the more resistant   
portions of the rock. This   
will result in differential   
weathering. Resistant  
Sandstone  
Susceptible  
Limestone  
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Factors that Influence Weathering 
Slope 
 
 |  
          | 
        
        
        Definition 
        
        
  On steep slopes weathering products may be quickly   
washed away by rains. On gentle slopes the weathering   
products accumulate. On gentle slopes water may stay in   
contact with rock for longer periods of time, and thus result in   
higher weathering rates.   
  
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Factors that Influence Weathering  
Climate 
 |  
          | 
        
        
        Definition 
        
        
  High amounts   
of water and higher   
temperatures generally   
cause chemical   
reactions to run   
faster. Thus warm   
humid climates   
generally have more   
highly weathered rock,   
and rates of   
weathering are higher   
than in cold dry   
climates. 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 
Factors that Influence Weathering  
Animals 
 
 |  
          | 
        
        
        Definition 
        
        
 Burrowing organisms like rodents, earthworms, & ants, bring   
material to the surface were it can be exposed to the agents of   
weathering. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Soil consists of rock and   
sediment that has been   
modified by physical and   
chemical interaction with   
organic material and   
rainwater, over time, to   
produce a substrate that can   
support the growth of plants.”  
Soil‐forming processes require   
long periods of time.   
Soil may be easily destroyed   
by human activities.  
Soils are an important natural   
resource.  
They represent the interface between   
the lithosphere and the biosphere ‐ as   
soils provide nutrients for plants.  
Soils consist of weathered rock plus   
organic material that comes from   
decaying plants and animals.  
The same factors that control   
weathering control soil formation   
with the exception, that soils also   
requires the input of organic material   
as some form of Carbon. 
When a soil develops on rock,   
a soil profile develops as   
shown below.  
These different layers are not   
the same as beds formed by   
sedimentation, instead each   
of the horizons forms and   
grows in place by weathering   
and the addition of organic   
material from decaying plants   
and plant roots. 
 
 
 |  
          | 
        
        
         | 
        
        
        Term 
        
        
 Soils  
Distinct horizons reflect  
soil-forming processes.  
O Horizonoils 
 |  
          | 
        
        
        Definition 
        
        
 Dark  
organic matter-rich  
surface layer.  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Organic  
and mineral matter. 
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Transitional layer  
leached by organic  
acids.   
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Organic-  
poor mineral rich  
layer.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 Slightly  
altered bedrock.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 In desert climates Caliche-  
(Calcite) forms in soils by  
chemical precipitation of  
calcite.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 In humid tropical climates intense weathering involving  
leaching occurs, leaving behind a soil rich in Fe & Al  
oxides, and giving the soil a deep red color.  This extremely  
leached soil is called a laterite.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
 In most climates it takes between 80 and 400 years to form  
about one centimeter of topsoil.  
Thus soil that is eroded by poor farming practices is lost and  
cannot be replaced in a reasonable amount of time.   
This could become critical for world population.  
  
 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | consists of fragments of rocks and minerals. |  
          | 
        
        
         | 
        
        
        Term 
        
        SED ROCKS  
sedimentation 
clastic sedimentation  |  
          | 
        
        
        Definition 
        
        When the energy of the transporting current is not strong enough to carry these particles, the particles drop out in the process of sedimentation.  
This type of sedimentary deposition is referred to asclastic sedimentation.  |  
          | 
        
        
         | 
        
        
        Term 
        
        SED ROCKS 
chemical sedimentation  |  
          | 
        
        
        Definition 
        
        | material is dissolved in water, and chemically precipitates from the water. This type of sedimentation is referred to aschemical sedimentation |  
          | 
        
        
         | 
        
        
        Term 
        
        SED ROCK 
biogenic sedimentation  |  
          | 
        
        
        Definition 
        
        | A third process can occur, wherein living organisms extract  ions dissolved in water to make such things as shells and bones.  This type of sedimentation is calledbiogenic sedimentation. |  
          | 
        
        
         | 
        
        
        Term 
        
        | THREE major types of sed rocks: |  
          | 
        
        
        Definition 
        
        | Clastic Sedimentary Rocks, Chemical Sedimentary Rocks, and Biogenic Sedimentary Rocks.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Clastic sedimentary particles are classified in terms of size |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Sediment can be transported by sliding down slopes, being picked up by the wind, or by being carried by running water in streams, rivers, or ocean currents. The distance the sediment is transported and the energy of the transporting medium all leave clues in the final sediment that tell us something about the mode of transportation.The formation of a clastic sedimentary rock involves three processes: |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Sediment is deposited when the energy of the transporting medium becomes too low to continue the transport process. In other words, if the velocity of the transporting medium becomes too low to transport sediment, the sediment will fall out and become deposited. The final sediment thus reflects the energy of the transporting medium.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Diagenesis is the process that turns sediment into rock. The first stage of the process is compaction. Compaction occurs as the weight of the overlying material increases. Compaction forces the grains closer together, reducing pore space and eliminating some of the contained water. Some of this water may carry mineral components in solution, and these constituents may later precipitate as new minerals in the pore spaces. This causes cementation, which will then start to bind the individual particles together. Further compaction and burial may cause recrystallization of the minerals to make the rock even harder.   |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | In an environment where there is excess oxygen (Oxidizing Environment) organic remains will be converted to carbon dioxide and water.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        In an environment where there is a depletion of oxygen (Reducing Environment), organic material may be transformed to solid carbon in the form of coal, or may be converted to hydrocarbons, the source of petroleum. 
  
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | The degree of uniformity of grain size. Particles become sorted on the basis of density, because of  the energy of the transporting medium.  High energy currents can carry larger fragments.  As the energy decreases, heavier particles are deposited and lighter fragments continue to be transported.  This results in sorting due to density.    |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | During the transportation process, grains may be reduced in size due to abrasion.  Random abrasion results in the eventual rounding off of the sharp corners and edges of grains.  Thus, rounding of grains gives us clues to the amount of time a sediment has been in the transportation cycle.  Rounding is classified on relative terms as well. |  
          | 
        
        
         | 
        
        
        Term 
        
        Chemical Sediments and Sedimentary Rocks 
Cherts  |  
          | 
        
        
        Definition 
        
        | chemically precipitated SiO2 |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | formed by evaporation of sea water or lake water.  Produces halite (salt) and gypsum deposits by chemical precipitation as concentration of solids increases due to water loss by evaporation.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | calcite (CaCO3) is precipitated by organisms usually to form a shell or other skeletal structure.  Accumulation of these skeletal remains results in a limestone. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Siliceous ooze consisting of the remains of radiolarian or diatoms can form a light colored soft rock called diatomite. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | accumulation of dead plant matter in large abundance in a reducing environment (lack of oxygen). |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | actually a clastic sedimentary rock that contains a high abundance of organic material that is converted to petroleum during diagenesis.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Alternating parallel layers having different properties.  Sometimes caused by seasonal changes in deposition (Varves). i.e. lake deposits wherein coarse sediment is deposited in summer months and fine sediment is deposited in the winter when the surface of the lake is frozen. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        |  Sets of beds that are inclined relative to one another.  The beds are inclined in the direction that the wind or water was moving at the time of deposition.  Boundaries between sets of cross beds usually represent an erosional surface. Very common in beach deposits, sand dunes, and river deposited sediment. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | As current velocity decreases, first the larger or more dense particles are deposited followed by smaller particles.  This results in bedding showing a decrease in grain size from the bottom of the bed to the top of the bed. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Sediment showing a mixture of grain sizes results from such things as rockfalls, debris flows, mudflows, and deposition from melting ice. |  
          | 
        
        
         | 
        
        
        Term 
        
        Surface Features 
Ripple Marks   |  
          | 
        
        
        Definition 
        
        | Characteristic of shallow water deposition.  Caused by waves or winds. |  
          | 
        
        
         | 
        
        
        Term 
        
        Mudcracks 
surface features  |  
          | 
        
        
        Definition 
        
        | result from the drying out of wet sediment at the surface of the Earth.  The cracks form due to shrinkage of the sediment as it dries. |  
          | 
        
        
         | 
        
        
        Term 
        
        Surface Features 
Raindrop Marks  |  
          | 
        
        
        Definition 
        
        | pits (or tiny craters) created by falling rain. If present, this suggests that the sediment was exposed to the surface of the Earth. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        Remains of once living organisms.  Probably the most important indicator of the environment of deposition. 
- Different species usually inhabit specific environments. 
  
- Because life has evolved - fossils give clues to relative age of the sediment. 
  
- Can also be important indicators of past climates. 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
- Iron oxides and sulfides along with buried organic matter give rocks a dark color.  Indicates deposition in a reducing environment. 
  
- Deposition in oxidizing environment produces red colored iron oxides. 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
A sedimentary facies is a group of characteristics which reflect a sedimentary environment different from those elsewhere in the same deposit. Thus, facies may change vertically through a sequence as a result of changing environments through time. Also, facies may change laterally through a deposit as a result of changing environments with distance at the same time. 
  
  |  
          | 
        
        
         | 
        
        
        Term 
        
        
Common Sedimentary Environments 
  |  
          | 
        
        
        Definition 
        
        
- Stream sediments 
  
- Lake sediments 
  
- Glacial (ice deposited) sediments 
  
- Eolian (wind deposited) sediments 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
        
        
Common Sedimentary Environments 
Continental Shelf sediments 
  |  
          | 
        
        
        Definition 
        
        
- Estuarine sediments 
  
- Deltaic sediments 
  
- Beach sediments 
  
- Carbonate shelf sediments 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
        
        | Continental slope and rise sediments  |  
          | 
        
        
        Definition 
        
        
- Turbidites 
  
- Deep Sea Fans 
  
- Sediment drifts 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
- Deep -Sea oozes 
  
- Land-derived sediments
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
        
        | Metamorphism and Metamorphic Rocks |  
          | 
        
        
        Definition 
         | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | changes in mineral assemblage and texture that result from subjecting a rock to pressures and temperatures different from those under which the rock originally formed. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        Diagenesis is also a change in form that occurs in sedimentary rocks.  In geology, however, we restrict diagenetic processes to those which occur at temperatures below 200oC and pressures below about 300 MPa (MPa stands for Mega Pascals), this is equivalent to about 3,000 atmospheres of pressure.
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | As the temperature and/or  pressure increases on a body of rock we say that the rock undergoes prograde metamorphism or that the grade of metamorphism increases. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | a general term for describing the relative temperature and pressure conditions under which metamorphic rocks form. |  
          | 
        
        
         | 
        
        
        Term 
        
        | hydrous minerals and low grade metamorphism |  
          | 
        
        
        Definition 
        
        | Low-grade metamorphism takes place at temperatures between about 200 to 320oC, and relatively low pressure.  Low grade metamorphic rocks are characterized by an abundance of hydrous minerals (minerals that contain water, H2O, in their crystal structure) |  
          | 
        
        
         | 
        
        
        Term 
        
        | Examples of hydrous minerals that occur in low grade metamorphic rocks |  
          | 
        
        
        Definition 
        
        
- Clay Minerals 
  
- Serpentine 
  
- Chlorite 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | High-grade metamorphism takes place at temperatures greater than 320oC and relatively high pressure.  As grade of metamorphism increases, hydrous minerals become less hydrous, by losing H2O and non-hydrous minerals become more common.  |  
          | 
        
        
         | 
        
        
        Term 
        
        | Examples of less hydrous minerals and non-hydrous minerals that characterize high grade metamorphic rocks: |  
          | 
        
        
        Definition 
        
        
- Muscovite - hydrous mineral that eventually disappears at the highest grade of metamorphism 
  
- Biotite - a hydrous mineral that is stable to very high grades of metamorphism.
  
- Pyroxene - a non hydrous mineral. 
  
- Garnet - a non hydrous mineral. 
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
  |  
| 
 As temperature and pressure fall due to erosion of overlying rock or due to tectonic uplift, one might expect metamorphism to a follow a reverse path and eventually return the rocks to their original unmetamorphosed state.  Such a process is referred to as retrograde metamorphism.  If retrograde metamorphism were common, we would not commonly see metamorphic rocks at the surface of the Earth.  Since we do see metamorphic rocks exposed at the Earth's surface retrograde metamorphism does not appear to be common.  The reasons for this include: 
- chemical reactions take place more slowly as temperature is decreased
  
- during prograde metamorphism, fluids such as H2O and CO2 are driven off, and these fluids are necessary to form the hydrous minerals that are stable at the Earth's surface.
  
- chemical reactions take place more rapidly in the presence of fluids, but if the fluids are driven off during prograde metamorphism, they will not be available to speed up reactions during retrograde metamorphism.
 
 
  
  
 | 
 
          | 
        
        
         | 
        
        
        Term 
        
        | FACTORS CONTROLLING METAMORPH. |  
          | 
        
        
        Definition 
        
        | Metamorphism occurs because some minerals are stable only under certain conditions of pressure and temperature.  When pressure and temperature change, chemical reactions occur to cause the minerals in the rock to change to an assemblage that is stable at the new pressure and temperature conditions.  |  
          | 
        
        
         | 
        
        
        Term 
        
        FACTORS THAT CONTROL META. 
Temperature   |  
          | 
        
        
        Definition 
        
        
- Temperature increases with depth in the Earth along the Geothermal Gradient.  Thus higher temperature can occur by burial of rock.
  
- Temperature can also increase due to igneous intrusion.
 
 
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Pressure increases with depth of burial, thus, both pressure and temperature will vary with depth in the Earth.  Pressure is defined as a force acting equally from all directions.  It is a type of stress, called hydrostatic stress, or uniform stress.  If the stress is not equal from all directions, then the stress is called a differential stress. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | These sheet silicates will grow with their sheets orientated perpendicular to the direction of maximum stress.  Preferred orientation of sheet silicates causes rocks to be easily broken along approximately parallel sheets.  Such a structure is called a foliation. |  
          | 
        
        
         | 
        
        
        Term 
        
        Fluid Phase 
FACTORS CONTROLLING META.  |  
          | 
        
        
        Definition 
        
        | Any existing open space between mineral grains in a rocks can potentially contain a fluid.  This fluid is mostly H2O, but contains dissolved mineral matter.  The fluid phase is important because chemical reactions that involve one solid mineral changing into another solid mineral can be greatly speeded up by having dissolved ions transported by the fluid.  Within increasing pressure of metamorphism, the pore spaces in which the fluid resides is reduced, and thus the fluid is driven off.  Thus, no fluid will be present when pressure and temperature decrease and, as discussed earlier, retrograde metamorphism will be inhibited. |  
          | 
        
        
         | 
        
        
        Term 
        
        FACTORS CONTROLLING META. 
Time  |  
          | 
        
        
        Definition 
        
        | The chemical reactions involved in metamorphism, along with recrystallization, and growth of new minerals are extremely slow processes.  Laboratory experiments suggest that the longer the time available for metamorphism, the larger are the sizes of the mineral grains produced.  Thus, coarse grained metamorphic rocks involve long times of metamorphism.  Experiments suggest that the time involved is millions of years. |  
          | 
        
        
         | 
        
        
        Term 
        
        Responses of Rock to Increasing Metamorphic Grade 
slate/ slatey cleavage  |  
          | 
        
        
        Definition 
        
        | Slates form at low metamorphic grade by the growth of fine grained chlorite and clay minerals.  The preferred orientation of these sheet silicates causes the rock to easily break along the planes parallel to the sheet silicates, causing a slatey cleavage.  Note that in the case shown here, the maximum stress is applied at an angle to the original bedding planes, so that the slatey cleavage has developed at an angle to the original bedding. |  
          | 
        
        
         | 
        
        
        Term 
        
        Responses of Rock to Increasing Metamorphic Grade 
Schist/schistosity 
 
  |  
          | 
        
        
        Definition 
        
        | Schist - The size of the mineral grains tends to enlarge with increasing grade of metamorphism.  Eventually the rock develops a near planar foliation caused by the preferred orientation of sheet silicates (mainly biotite and muscovite).  Quartz and Feldspar grains, however show no preferred orientation.  The irregular planar foliation at this stage is called schistosity |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | Gneiss  As metamorphic grade increases, the sheet silicates become unstable and dark colored minerals like hornblende and pyroxene start to grow.  These dark colored minerals tend to become segregated in distinct bands through the rock, giving the rock a gneissic banding.  Because the dark colored minerals tend to form elongated crystals,  rather than sheet- like crystals, they still have a preferred orientation with their long directions perpendicular to the maximum differential stress. |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        |  At the highest grades of metamorphism all of the hydrous minerals and sheet silicates become unstable and thus there are few minerals present that would show a preferred orientation.  The resulting rock will have a granulitic texture that is similar to a phaneritic texture in igneous rocks. |  
          | 
        
        
         | 
        
        
        Term 
        
        Metamorphism of Basalts and Gabbros 
Greenschist  |  
          | 
        
        
        Definition 
        
        | Olivine, pyroxene, and plagioclase in an original basalt change to amphiboles and chlorite (both commonly green) as water in the pore spaces reacts with the original minerals at temperatures and pressures of low grade metamorphism.  |  
          | 
        
        
         | 
        
        
        Term 
        
        Metamorphism of Basalts and Gabbros 
Amphibolite  |  
          | 
        
        
        Definition 
        
        | As pressure and temperature increase to intermediate grades of metamorphism, only dark colored amphiboles and plagioclase survive and the resulting rock is called an amphibolite. |  
          | 
        
        
         | 
        
        
        Term 
        
        Metamorphism of Basalts and Gabbros 
Granulite  |  
          | 
        
        
        Definition 
        
        | At the highest grade of metamorphism the amphiboles are replaced by pyroxenes and garnets, the foliation is lost and a granulite that has a granulitic texture is produced.  |  
          | 
        
        
         | 
        
        
        Term 
        
        Metamorphism of Limestone and Sandstone 
Marble  |  
          | 
        
        
        Definition 
        
        | Since limestones are made up of essentially one mineral, Calcite, and calcite is stable over a wide range of temperature and pressure, metamorphism of limestone only causes the original calcite crystals to grow larger.  Since no sheet silicates are present the resulting rock, a marble, does not show foliation. |  
          | 
        
        
         | 
        
        
        Term 
        
        Metamorphism of Limestone and Sandstone 
Quartzite  |  
          | 
        
        
        Definition 
        
        | Metamorphism of sandstone originally containing only quartz, results in recrystallization and growth of the quartz, producing a non foliated rock called a quartzite.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | This type of metamorphism is due to mechanical deformation, like when two bodies of rock slide past one another along a fault zone.  Heat is generated by the friction of sliding along the zone, and the rocks tend to crushed and pulverized due to the sliding.  Cataclastic metamorphism is not very common and is restricted to a narrow zone along which the sliding occurred.  |  
          | 
        
        
         | 
        
        
        Term 
        
        Types of Metamorphism 
Burial Metamorphism  |  
          | 
        
        
        Definition 
        
        | When sedimentary rocks are buried to depths of several hundred meters, temperatures greater than 300oC may develop in the absence of differential stress.  New minerals grow, but the rock does not appear to be metamorphosed.  The main minerals produced are the Zeolites.  Burial metamorphism overlaps, to some extent, with diagenesis, and grades into regional metamorphism as temperature and pressure increase. |  
          | 
        
        
         | 
        
        
        Term 
        
        Types of Metamorphism 
Contact Metamorphism  |  
          | 
        
        
        Definition 
        
        | Occurs adjacent to igneous intrusions and results from high temperatures associated with the igneous intrusion.  Since only a small area surrounding the intrusion is heated by the magma, metamorphism is restricted to a zone surrounding the intrusion, called a metamorphic aureole.  Outside of the contact aureole, the rocks are unmetamorphosed.  The grade of metamorphism increases in all directions toward the intrusion.  Because temperature differences between the surrounding rock and the intruded magma are larger at shallow levels in the crust, contact metamorphism is usually referred to as high temperature, low pressure metamorphism.  The rock produced is often a fine-grained rock that shows no foliation, called a hornfels. |  
          | 
        
        
         | 
        
        
        Term 
        
        types of meta. 
Regional Metamorphis  |  
          | 
        
        
        Definition 
        
        | This type of metamorphism occurs over large areas that were subjected to high degrees of deformation under differential stress.  Thus, it usually results in forming metamorphic rocks that are strongly foliated, such as slates, schists, and gniesses.  The differential stress usually results from tectonic forces that produce a compression of the rocks, such as when two continental masses collide with one another. Thus, regionally metamorphosed rocks occur in the cores of mountain ranges or in eroded mountain ranges.  Compressive stresses result in folding of the rock, as shown here, and results in thickening of the crust which tends to push rocks down to deeper levels where they are subjected to higher temperatures and pressures |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        
In general, metamorphic rocks do not undergo significant changes in chemical composition during metamorphism.  The changes in mineral assemblages are due to changes in the temperature and pressure conditions of metamorphism.  Thus, the mineral assemblages that are observed must be an indication of the temperature and pressure environment that the rock was subjected to.  This pressure and temperature environment is referred to as metamorphic Facies. (This is similar to the concept of  sedimentary facies, in that a sedimentary facies is also a set of environmental conditions present during deposition). 
  
  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | The sequence of metamorphic facies observed in any metamorphic terrain, depends on the geothermal gradient that was present during metamorphism.  A high geothermal gradient such as the one labeled "A"  in the figure shown here, might be present around an igneous intrusion, and would result in metamorphic rocks belonging to the hornfels facies.  Under a normal geothermal gradient, such as "B" in the figure, rocks would progress from zeolite facies to greenschist, amphibolite, and eclogite facies as the grade of metamorphism (or depth of burial) increased.  |  
          | 
        
        
         | 
        
        
        Term 
        
        | Metamorphism and Plate Tectonics |  
          | 
        
        
        Definition 
        
        
- Along zones where subduction is occurring, magmas are generated near the subduction zone and intrude into shallow levels of the crust.  Because high temperature is brought near the surface, the geothermal gradient in these regions becomes high (geothermal gradient "A" in the figure above), and contact metamorphism (hornfels facies) results.
  
- Because compression occurs along a subduction margin (the oceanic crust moves toward the volcanic arc) rocks may be pushed down to depths along either a normal or slightly higher than normal geothermal gradient ("B" in the figure above).  Actually the geothermal gradient is likely to be slightly higher than B, because the passage of magma through the crust will tend to heat the crust somewhat.  In these regions we expect to see greenschist, amphibolite, and granulite facies metamorphic rocks.
  
- Along a subduction zone, relatively cool oceanic lithosphere is pushed down to great depths.  This results in producing a low geothermal gradient (temperature increases slowly with depth).  This low geothermal gradient ("C") in the diagram above, results in metamorphism into the blueschist and eclogite facies.
 
  
 
  |  
          | 
        
        
         | 
        
        
        Term 
        
        Continental Rifting 
global tectonics  |  
          | 
        
        
        Definition 
        
        
A new divergent plate boundary can form when continental lithosphere stretches, and thins to form a rift valley.As the rift widens and thins, upwelling asthenosphere can melt to produce magmas that start to create new oceanic lithosphere and spread the new plates apart (see figure 4.23 in your text).. 
An example of an where rifting may be forming a future diverging plate margin is an area of northeastern Africa, called the East African Rift Valley.  Another area where this is apparently occurring is the Basin and Range Province of the Western U.S. 
  |  
          | 
        
        
         | 
        
        
        Term 
        
        Continental Collisions 
global tectonics  |  
          | 
        
        
        Definition 
        
        When two plates that have low density continental lithosphere collide with one another subduction ceases because the continental lithosphere has too low of a density to be subducted. As the plates continue to collide fold - thrust mountain belts that develop along the zone of collision. 
Currently the highest mountains in the world, the Himalayas represent this kind of event. The Himalayas resulted from a collision of the plate containing India with the plate containing Eurasia. This collision is still taking place and results in joining the two formerly separate plates. The occurrence of ancient fold -thrust mountain belts such as the Appalachian Mountains of the Eastern U.S., the Urals of Central Russia, and the Alps of southern Europe, are evidence of ancient continental collision margins.  |  
          | 
        
        
         | 
        
        
        Term 
         | 
        
        
        Definition 
        
        | a substance that satisfies some, but not all of the parts of the definition.  For example, opal, does not have a characteristic crystalline structure, so it is considered a mineraloid. |  
          | 
        
        
         |