Shared Flashcard Set

Details

MTH 112
Pre-Calculus/Trigonometry
44
Mathematics
Undergraduate 1
12/08/2013

Additional Mathematics Flashcards

 


 

Cards

Term

 

Arc Length

Definition

 

s = rθ

Term

 

Area of a Sector of a Circle

Definition

 

A = ½r2θ

 

Term

 

Linear Speed of an Object Traveling in Circular Motion

Definition

 

 

v = s/t

Term

 

Angular Speed of an Object Travelling in Circular Motion:

Definition

 

ω = θ/t

Term

 

Sin(π/6)

Definition

 

Sin(π/6) = 1/2

Term

 

Cos(π/6)

Definition

 

Cos(π/6) = √(3)/2



Term

 

Tan(π/6)

Definition

 

Tan(π/6) = √(3)/3

Term

 

Sin(π/3)

Definition

 

Sin(π/3) = √(3)/2

Term

 

Cos(π/3)

Definition

 

Cos(π/3) = ½

Term

 

Tan(π/3)

Definition

 

Tan(π/3) = √(3)

Term

 

Sinθ

Domain:

Range:

Definition

 

Sinθ

Domain: All real numbers

Range: -1 ≤ sinθ ≤ 1

Term

 

Cosθ

Domain:

Range:

Definition

 

Cosθ

Domain: All real numbers

Range: -1 ≤ cosθ ≤ 1

Term

 

Tanθ:

Domain:

Range:

Definition

 

Tanθ:

Domain: All real numbers, except odd interger multiples of π/2

Range: All Real Numbers

Term

 

Pythagorean Identity:

Definition

 

sin2θ + cos2θ = 1

Term

 

tan2θ + 1 = ?

Definition

 

tan2θ + 1 = sec2θ

Term

 

Cot2θ + 1 = ?

Definition

 

Cot2θ + 1 = Csc2θ

Term

 

Equation for a Graph of the Sine/Cos Function:

Definition

 y = Asin(ωx - φ) + B

y = Asin[ω(x-(φ/ω))]

 

Amplitude = |A|

Period = T = 2π/ω

Phase Shift = φ/ω

B = Vertical Shift

Term

 

Equation for the Graph of a Tangent Function:

Definition

 

y = Atan(ωx) + B

 

Vertical Stretch = |A|

Period = T = π/ω

Vertical Shift = B

Term

 

Translate:

sin-1(x) = y

Definition

 

sin(y) = x

 

-1 ≤ x ≤ 1 and -π/2 ≤ y ≤ π/2

 

Term

 

Sum and Difference Formulas:

cos(α + β) = 

sin(α + β) =

tan(α + β) = 

Definition

 

cos(α + β) = cosα cosβ - sinα sinβ

sin(α + β) = sinα cosβ + cosα sinβ

tan(α + β) = (tanα + tanβ)/(1- tanα tanβ)

Term

 

Sum and Difference Formulas:

cos(α - β) = 

sin(α - β) = 

tan(α - β) = 

Definition

 

cos(α - β) = cosα cosβ + sinα sinβ

sin(α - β) = sinα cosβ - cosα sinβ

tan(α - β) = (tanα - tanβ)/(1 + tanα tanβ)

Term

 

Double Angle Formulas:

sin (2θ) = 

Definition

 

sin(2θ) = 2 sin(θ) cos(θ)

Term

 

Double Angle Formulas:

Cos(2θ) =

Definition

 

Cos(2θ) = cos2θ - sin2θ

Cos(2θ) = 1 - 2sin2θ

Cos(2θ) = 2cos2θ - 1

Term

 

Double Angle Formulas:

Tan(2θ) = 

 

 

Definition

 

Tan(2θ) = 2tan(θ)/(1-tan2θ)

Term

 

Half Angle Formulas:

sin(α/2) = 

cos(α/2) =

tan(α/2) = 

Definition

 

sin(α/2) = ±√((1 - cosα)/2)

cos(α/2) = ±√((1 + cosα)/2)

tan(α/2) = ±√((1 - cosα)/(1 + cosα))

tan(α/2) = (1- cosα) / sinα = sinα / (1+ cosα)


± determined by the quadrant of α/2

Term

 

Product - to - Sum Formulas:

sinα sinβ = 

cosα cosβ = 

sinα cosβ = 

Definition

 

sinα sinβ = ½[cos(α - β) - cos(α + β)]

cosα cosβ = ½[cos(α - β) + cos(α + β)]

sinα cosβ = ½[sin(α + β) + sin(α - β)]

Term

 

Sum - to - Product Formulas:

sinα + sinβ =

sinα - sinβ =

cosα + cosβ =

cosα - cosβ =

Definition

 

sinα + sinβ = 2sin((α + β)/2) cos((α - β)/2)

sinα - sinβ = 2sin((α - β)/2) cos((α + β)/2)

cosα + cosβ = 2cos((α + β)/2) cos((α - β)/2)

cosα - cosβ = -2sin((α + β)/2) sin((α - β)/2)

Term

 

Complementary Angle Theorem:

Definition

 

Cofunctions of Complementary Angles are Equal:

tan(x) = cot(90-x)

tan(40°) = cot(50°)

Term

 

The Law of Sines:

Definition

 

SinA = SinB = SinC

a          b           c

 

Term

 

The Law of Cosines:

Definition

 

c2 = a2 + b- 2ab cosC

b2 = a2 + c- 2ac cosB

a2 = b2 + c- 2bc cosA

 

Term

 

Convert from Polar to Rectangular Coordinates:

Definition

 

x = rcosθ

y = rsinθ

Term

 

Convert from Rectangular to Polar Coordinates:

Definition

 

r2 = x2 + y2

tanθ = y/x          if x ≠ 0

Term

 

Find the Magnitude of a Point in the Complex Plane:

Definition

 

General Form of a Complex Number: x + yι

 

|z| = √(x2 + y2)

 

 

Term

 

Convert a Complex Number Between Rectangular and Polar Form:

Definition

 

z = x + yi = (r cosθ) + (r sinθ)i = r(cosθ + i sinθ)

Term

 

Find the Product of Complex Numbers in Polar Form:

Definition

 

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

Term

 

Find the Quotient of Complex Numbers in Polar Form:

Definition

 

z1/z2 = r1/r2[cos(θ1 - θ2) + i sin(θ1 - θ2)]

Term

 

De Moivre's Theorem:

(Used to raise a complex number to a power)

Definition

 

zn = rn[cos(nθ) + i sin(nθ)]

 

where n ≥ 1 (any positive interger)

Term

 

Find a Complex Root:

zn = w

 

where z is the complex nth root of w

Definition

 

zk = (n√r)[cos((θ0/n) + ((2kπ)/n)) + i sin((θ0/n) + ((2kπ)/n))]

                                      

where k = 0, 1, 2, 3, ... n-1

Term

 

Define the horizontal and vertical components of a vector v in terms of the unit vectors and j:

Definition

 

= the unit vector on the positive x-axis

= the unit vector on the positive y-axis

 

v = ‹a,b› = ai + bj

Term

 

Operations with Vectors:

=

w

αv

||v|| = 

Definition


= (a1 + a2)i + (b1 + b2)j

w(a1 - a2)i + (b1 - b2)j

αv(αa1)i + (αb1)j

||v|| = √(a21 + b21)

Term

 

Find a Unit Vector u That Has the Same Direction as a Given Vector v:

Definition

 

u = v

       ||v||

Term

 

Find the Dot Product of Two Vectors:

v · w 

 

given v = ‹a1,b1› and w‹a2,b2

Definition

 

v · w a1a2 + b1b2

Term

 

Find the Angle Between Two Vectors:

 

Definition

 

cosθ =    u · v

               ||u|| ||v||


two vectors are parallel if cosθ = ±1

two vectors are perpendicular if · w = 0

Supporting users have an ad free experience!