Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
x2
Domiain: (-∞,+∞)
Range: [0, -∞)
|
|
|
Term
x2
Symmetry: ?
Even/ Odd/ Neither: ? |
|
Definition
x2
Symmetry: y - axis
Even/ Odd/ Neither: Even |
|
|
Term
|
Definition
x3
Domiain: (-∞,+∞)
Range: (-∞, +∞)
|
|
|
Term
x3
Symmetry: ?
Even/ Odd/ Neither: ? |
|
Definition
x3
Symmetry: Origin
Even/ Odd/ Neither: Odd |
|
|
Term
√(x)
Domiain: [0,+∞)
Range: [0, +∞)
|
|
Definition
√(x)
Domiain: [0,+∞)
Range: [0, +∞)
|
|
|
Term
√(x)
Symmetry: ?
Even/ Odd/ Neither: ? |
|
Definition
√(x)
Symmetry: neither
Even/ Odd/ Neither: neither |
|
|
Term
|
Definition
|x|
Domiain: [-∞,+∞)
Range: [0, +∞)
|
|
|
Term
|x|
Symmetry: ?
Even/ Odd/ Neither: ? |
|
Definition
|x|
Symmetry: Y -Axis
Even/ Odd/ Neither: Even |
|
|
Term
|
Definition
1
x
Domiain: (-∞,0)U(0, +∞)
Range: (-∞,0)U(0, +∞)
|
|
|
Term
1
x
Symmetry: ?
Even/ Odd/ Neither: ? |
|
Definition
1
x
Symmetry: Origin
Even/ Odd/ Neither: Odd |
|
|
Term
x2 + c
Domain: ?
Range: ? |
|
Definition
up by c
Domain: all real numbers
Range: [c , +∞) |
|
|
Term
|x|- c
Domain: ?
Range: ? |
|
Definition
down by c
Domain: all real numbers
Range: [c , +∞) |
|
|
Term
√(x+c)
Domain: ?
Range: ? |
|
Definition
left by c
Domain: [c , +∞)
Range: [0, +∞) |
|
|
Term
__1__
(x - c)
Domain: ?
Range: ? |
|
Definition
to the right c
Domain: (-∞, c) U (c, +∞)
Range: (-∞, 0) U (0, +∞) |
|
|
Term
|
Definition
a3 - b3 = (a - b) (a2 + ab + b2) |
|
|
Term
|
Definition
a3 + b3 = (a + b) (a2 - ab + b2) |
|
|
Term
|
Definition
(a2 - b2) = (a - b) (a + b) |
|
|