Term
What evidence was used early on for the theory of continental drift? |
|
Definition
Alfred Wegener investigated the fit of the Atlantic coasts more carefully than had his predecessors and grouped all the continents together into one great land mass, which he called Pangaea. He supposed that the mass began to break apart about 200 million years ago. He also showed that some geological features on the opposite coasts could have fitted together, and that there were many striking similarities between the fossil plants and reptiles on the opposite coasts, particularly the coasts of Africa and South America.
Wegener also pointed out that ancient climatic zones seemed to have lain in different places from the present zones. He pointed out that where great ice sheets have melted in recent geological times in Scandinavia and North America, the land is rising as fast as a centimeter a year. This vertical uplift, he said, requires horizontal inflow of matter below and implies that flow and motion do take place within the earth. |
|
|
Term
What was wrong with Wegner's hypothesis concerning continental drift? |
|
Definition
He has no convincing mechanism for how th continents might move.
|
|
|
Term
Explain and describe paleomagnetism. How does it fit into continental drift? |
|
Definition
Paleomagnetism is the study of the record of the Earth's magnetic field in rocks. Certain minerals in rocks lock-in a record of the direction and intensity of the magnetic field when they form. This record provides information on the past behavior of Earth's magnetic field and the past location of tectonic plates. The record of geomagnetic reversals preserved in volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronologic tool.
Geophysicists who specialize in paleomagnetism are called paleomagnetists.
Paleomagnetists led the revival of the theory of continental drift and its transformation into plate tectonics. Apparent polar wander paths provided the first clear geophysical evidence for continental drift, while marine magnetic anomalies did the same for seafloor spreading. Paleomagnetism continues to extend the history of plate tectonics back in time and are applied to the movement of continental fragments, or terranes.
Paleomagnetism relied heavily on new developments in rock magnetism, which in turn has provided the foundation for new applications of magnetism. These include biomagnetism, magnetic fabrics (used as strain indicators in rocks and soils), and environmental magnetism.
|
|
|
Term
List and draw the 5 plate boundry zones. |
|
Definition
Plate Boundaries |
There are 3 primary types of Tectonic Plate boundaries: Divergent boundaries; Covergent boundaries; and Transform boundaries. As the giant plates move, diverging [pulling apart] or converging [coming together] along their borders, tremendous energies are unleashed resulting in tremors that transform Earth’s surface. While all the plates appear to be moving at different relative speeds and independently of each other, the whole jigsaw puzzle of plates is interconnected. No single plate can move without affecting others, and the activity of one can influence another thousands of miles away. For example, as the Atlantic Ocean grows wider with the spreading of the African Plate away from the South American Plate, the Pacific sea floor is being consumed in deep subduction trenches over ten thousand miles away. (All graphics courtesy of USGS.org).
Divergent Boundaries: At divergent boundaries new crust is created as wo or more plates pull away from each other. Oceans are born and grow wider where plates diverge or pull apart. As seen below, when a diverging boundary occurs on land a 'rift', or separation will arise and over time that mass of land will break apart into distinct land masses and the surrounding water will fill the space between them.Jump to 'Birth of an Ocean' |
[image] |
Iceland offers scientists a natural laboratory for studying - on land - the processes that occur along submerged parts of a divergent boundary. Iceland is splitting along the Mid-Atlantic Ridge - a divergent boundary between the North American and Eurasian Plates. As North America moves westward and Eurasia eastward, new crust is created on both sides of the diverging boundary. While the creation of new crust adds mass to Iceland on both sides of the boundary, it also creates a rift along the boundary. Iceland will inevitably break apart into two separate land masses at some point in the future, as the Atlantic waters eventually rush in to fill the widening and deepening space between. |
|
Convergent Boundaries: Here crust is destroyed and recycled back into the interior of the Earth as one plate dives under another. These are known as Subduction Zones - mountains and volcanoes are often found where plates converge. There are 3 types of convergent boundaries: Oceanic-Continental Convergence; Oceanic-Oceanic Convergence; and Continental-Continental Convergence.
|
Oceanic-Continental Convergence |
[image] |
When an oceanic plate pushes into and subducts under a continental plate, the overriding continental plate is lifted up and a mountain range is created. Even though the oceanic plate as a whole sinks smoothly and continuously into the subduction trench, the deepest part of the subducting plate breaks into smaller pieces. These smaller pieces become locked in place for long periods of time before moving suddenly and generating large earthquakes. Such earthquakes are often accompanied by uplift of the land by as much as a few meters. |
Oceanic-Oceanic Convergence |
[image] |
When two oceanic plates converge one is usually subducted under the other and in the process a deep oceanic trench is formed. The Marianas Trench, for example, is a deep trench created as the result of the Phillipine Plate subducting under the Pacific Plate.
Oceanic-oceanic plate convergence also results in the formation of undersea volcanoes. Over millions of years, however, the erupted lava and volcanic debris pile up on the ocean floor until a submarine volcano rises above sea level to form an island volcano. Such volcanoes are typically strung out in chains called island arcs. |
Continental-Continental Convergence |
[image] |
When two continents meet head-on, neither is subducted because the continental rocks are relatively light and, like two colliding icebergs, resist downward motion. Instead, the crust tends to buckle and be pushed upward or sideways. The collision of India into Asia 50 million years ago caused the Eurasian Plate to crumple up and override the Indian Plate. After the collision, the slow continuous convergence of the two plates over millions of years pushed up the Himalayas and the Tibetan Plateau to their present heights. Most of this growth occurred during the past 10 million years.
|
|
Transform-Fault Boundaries: Transform-Fault Boundaries are where two plates are sliding horizontally past one another. These are also known as transform boundaries or more commonly as faults. |
[image] |
Most transform faults are found on the ocean floor. They commonly offset active spreading ridges, producing zig-zag plate margins, and are generally defined by shallow earthquakes. A few, however, occur on land. The San Andreas fault zone in California is a transform fault that connects the East Pacific Rise, a divergent boundary to the south, with the South Gorda -- Juan de Fuca -- Explorer Ridge, another divergent boundary to the north. The San Andreas is one of the few transform faults exposed on land. The San Andreas fault zone, which is about 1,300 km long and in places tens of kilometers wide, slices through two thirds of the length of California. Along it, the Pacific Plate has been grinding horizontally past the North American Plate for 10 million years, at an average rate of about 5 cm/yr. Land on the west side of the fault zone (on the Pacific Plate) is moving in a northwesterly direction relative to the land on the east side of the fault zone (on the North American Plate). |
|
|
|
|
Term
List three current day technological evidence that plates move through time. |
|
Definition
Sunami and Earthquake of Japan
Hawiian Islands are disappering
San Andreas Fault moves about 5cm per year and creates earthquakes numerious times through out the year in CA. |
|
|
Term
|
Definition
he places known as hotspots or hot spots in geology are volcanic regions thought to be fed by underlying mantle that is anomalously hot compared with the mantle elsewhere. They may be on, near to, or far from tectonic plate boundaries. There are two hypotheses to explain them. One suggests that they are due to hot mantle plumes that rise as thermal diapirs from the core-mantle boundary.[1] The other hypothesis postulates that it is not high temperature that causes thevolcanism, but lithospheric extension that permits the passive rising of melt from shallow depths.[2][3] This hypothesis considers the term "hotspot" to be a misnomer, asserting that the mantle source beneath them is, in fact, not anomalously hot at all. Well known examples include Hawaii and Yellowstone. |
|
|
Term
How are island arcs formed? |
|
Definition
An island arc is a type of archipelago, often composed of a chain of volcanoes, with arc-shaped alignment, situated parallel and close to a boundary between two converging tectonic plates.
Most of these island arcs are formed as one oceanic tectonic plate subducts another one and, in most cases, produces magma at depth below the over-riding plate. However, this is only true for those island arcs that are part of the group of mountain belts which are called volcanic arcs, a term which is used when all the elements of the arc-shaped mountain belt are composed of volcanoes. For example, large parts of the Andes/Central American/Canadian mountain chain may be known as a volcanic arc, but they are not islands (being situated upon and along a continental area) and are thus not classified as an island arc. On the other hand, the Aegean or Hellenic arc in the Mediterranean area, composed of numerous islands such as Crete, is an island arc, but is not volcanic. Parallel to it is the South Aegean Volcanic Arc, which is the volcanic island arc of the same tectonic system. |
|
|