Term
| Cubic Axial lengths and angles |
|
Definition
| a=b=c, alpha=beta=gamma=90 degrees |
|
|
Term
| Tetragonal Axial lengths and angles |
|
Definition
| a=b not=c, alpha=beta=gamma=90 degrees |
|
|
Term
| Orthorhombic Axial lengths and angles |
|
Definition
| a NE b NE c, alpha=beta=gamma=90 degrees |
|
|
Term
| Rhombohedral Axial lengths and angles |
|
Definition
| a=b=c, alpha=beta=gamma NE 90 degrees |
|
|
Term
| Hexagonal Axial lengths and angles |
|
Definition
| a=b NE c, alpha=beta=90 degrees, gamma=120 degrees |
|
|
Term
| Monoclinic Axial lengths and angles |
|
Definition
| a NE b NE c, alpha=gamma=90 degrees NE beta |
|
|
Term
| Triclinic Axial lengths and angles |
|
Definition
| a NE b NE c, alpha NE beta NE gamma NE 90 degrees |
|
|
Term
| Three crystal structures of most elemental metals at room temperature |
|
Definition
Body-centered cubic (bcc) Face-centered cubic (fcc) Hexagonal close packed (hcp) |
|
|
Term
Atomic packing factor (APF) equation |
|
Definition
Fraction of the unit cell volume occupied by the atoms APF=N(atoms)V(atoms)/V(crystal) |
|
|
Term
| Body-centered cubic (bcc) |
|
Definition
One atom at the center of the unit cell One-eighth atom at each corner Two atoms in each bcc unit cell Bcc metals: -Fe, V, Cr, Mo, W Unit cell face lenght a=4r/sqrt(3) |
|
|
Term
| Face-centered cubic (fcc) |
|
Definition
One-half atom in the center of each face One-eight atom at each corner Four atoms in each fcc unit cell Fcc metals: -Fe, Al, Ni, Cu, Ag, Pt, Au a=4r/sqrt(2) |
|
|
Term
| Hexagonal close packed (hcp) |
|
Definition
Based on hexagonal Bavais lattice Two atoms associated with Bravais lattice point One atom centered within the unit cell, various fraction atoms at corners (four 1/6, four 1/12 atoms) Total of 2 atoms in unit cell APF=0.74 Hcp material: Be, Mg, -Ti, Zn, Zr |
|
|