Term
|
Definition
A=1/2bh
A=(midseg)h
A=1/2ab(sinΘ)
A=√s(s-a)(s-b)(s-c) -s=a+b+c/2 |
|
|
Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
|
|
Term
|
Definition
A=bh
A=a2(sinΘ)
A=1/2(d1)(d2) |
|
|
Term
|
Definition
|
|
Term
|
Definition
A=1/2(b1+b2)h
A=(midseg)h |
|
|
Term
|
Definition
|
|
Term
|
Definition
SA=6(area square)
V=(BaseArea)(height) |
|
|
Term
|
Definition
SA=2(b1h1)+2(b2h2)+2(b3h3)
V=(BaseArea)(height) |
|
|
Term
|
Definition
SA=2(Sq.A)+4(Rect.A)
V=(BaseArea)(height) |
|
|
Term
|
Definition
SA=2(Pent. A)+5(Rect.A)
V=(BaseArea)(height) |
|
|
Term
Right Regular hexagonal prism |
|
Definition
SA=2(Hex.A)+6(Rect.A)
V=(BaseArea)(height) |
|
|
Term
|
Definition
SA=2(Tri.A)+b1h1+b2h2+b3h3
V=(BaseArea)(height) |
|
|
Term
|
Definition
SA=(Base.A)+atri1+atri2+atri3
V=1/3(BaseArea)(height) |
|
|
Term
|
Definition
SA=(BaseA.)+4(atri faces)
V=1/3(BaseArea)(height) |
|
|
Term
Right rectangular pyramid |
|
Definition
SA=(Base A)+4(a tri faces)
V=1/3(BaseArea)(height) |
|
|
Term
Right Regular Pentagonal Pyramid |
|
Definition
SA=(Base A)+5(a tri face)
V=1/3(BaseArea)(height) |
|
|
Term
Right Regular hexagonal pyramid |
|
Definition
SA=(Base.A+6(a tri face)
V=1/3(BaseArea)(height) |
|
|
Term
Right Regular octagonal pyramid |
|
Definition
SA=(Base.A)+8(a tri face)
V=1/3(BaseArea)(height) |
|
|
Term
Right Trapezoidal pyramid |
|
Definition
SA=(Base.A)+atri1+atri2+atri3+atri4 V=1/3(BaseArea)(height) |
|
|
Term
|
Definition
SA=2∏r2+2∏2h
V=(BaseArea)(height)
V=∏r2h |
|
|
Term
|
Definition
SA=∏r2+∏rl
V=1/3(BaseArea)(height)
V=1/3∏r2h |
|
|
Term
|
Definition
|
|