Shared Flashcard Set

Details

1-Day Four: Calculus
1-Day Four: Calculus
25
Mathematics
Undergraduate 1
08/30/2016

Additional Mathematics Flashcards

 


 

Cards

Term
How Do You Solve This Problem?:
Lim ((x^2-A^2)/x-A)
When x-> A
---------------------
Definition
1.) Factor Two Perfect Squares
((x+A)(x-A))/x-A
---------------------
2.)Eliminate the Common Factors
(x+A)
--------------------------
3.) Evaluate the Function
(A+A)
----------------------
4.) Solution
(A+A)
----------------------
Term
What Is The Solution To This Problem?:
Lim ((x^2-A^2)/x-A)
When x-> A
---------------------
Definition
(A+A)
---------------
Term
What is The Solution To This Problem?:
(Ax+B)/(C+Dx-(x^2))
When x-> Infinity
------------------
Definition
0 because A/infinity = 0
--------------
Term
How Do You Solve This Problem?:
(Ax+B)/(C+Dx-(x^2))
When x-> Infinity
------------------
Definition
1.) Divide The Numerator and Denominator By "x"
a.) ((Ax+B)/x)/((C+Dx-(x^2))/x)
b.) (A+B/x)/((C/x)+D-x))
---------------------
2.) Replace "x" for infinity
(A+B/Infinity)/((C/Infinity)+D-Infinity))
-------------------
3.) Anything divided by Infinity Equals Zero
(A+0)/(0+D-Infinity)
----------------------
4.) Anything Minus Infinity Equals Infinity
A/Infinity
----------------------
5.) Anything divided by Infinity Equals Zero
0
---------------
6.) Your solution is:
0
----------------------
Term
If an object moves along a straight line with position "s(t)" at time "t", then..
-------------------
Definition
The Instantaneous velocity of the object at "t" = "a", is

Lim s(a+h)-s(a)/h
when h -> 0
---------------
Term
Anything Divided By Infinity Equals What?
------------------
Definition
Zero
-----------
Term
Anything Plus or Minus Infinity Equals What?
--------------------------
Definition
Infinity
----------
Term
What is the solution to this problem?
Ax/x
----------------
Definition
A
------------
Term
How Do You Solve This Problem?:
(Ax+B)/(C+Dx-(x^2))
When x-> Infinity
------------------
Definition
1.) Divide The Numerator and Denominator By "x"
a.) ((Ax+B)/x)/((C+Dx-(x^2))/x)
b.) (A+B/x)/((C/x)+D-x))
---------------------
2.) Replace "x" for infinity
(A+B/Infinity)/((C/Infinity)+D-Infinity))
-------------------
3.) Anything divided by Infinity Equals Zero
(A+0)/(0+D-Infinity)
----------------------
4.) Anything Minus Infinity Equals Infinity
A/Infinity
----------------------
5.) Anything divided by Infinity Equals Zero
0
---------------
6.) Your solution is:
0
----------------------
Term
If an object moves along a straight line with position "s(t)" at time "t", then..
-------------------
Definition
The Instantaneous velocity of the object at "t" = "a", is

Lim s(a+h)-s(a)/h
when h -> 0
---------------
Term
Anything Divided By Infinity Equals What?
------------------
Definition
Zero
-----------
Term
Anything Plus or Minus Infinity Equals What?
--------------------------
Definition
Infinity
----------
Term
What is the solution to this problem?
Ax/x
----------------
Definition
A
------------
Term
How Do You Solve This Problem?

What is the Average Rate of Change of The Following?
s(t) = (At^2) - Bt + C
From D seconds to E seconds
---------------
Definition
1.) Solve
s(D)
---------------
2.) Solve
s(E)
-------------
3.) Solve
s(D)-s(E)/D-E
----------------
Term
How Do You Solve The Following Problem?

What is the Instantaneous Rate of Change of The Following Problem?
s(t) = (At^2) - Bt + C
At D seconds
-----------------
Definition
1.) Solve
s(D+h)
-----------
2.) Solve
s(D)
-----------
3.) Set Up This Problem
s(D+h)-s(D)/h
----------------------------
4.) Eliminate Any Common Terms In The Numerator
----------------------------
5.) Divide The Numerator By The Denominator
-----------------------------
6.) Make "h" Equal to Zero
--------------------------
7.) Solve
------------------------------
Term
What Is The Solution To This Problem?
(A+B)^2
---------------------------
Definition
1.) Step One
(A*A)+(A*B)+(B*A)+(B*B)
---------------------
2.) Solution
(A^2)+2(BA)+(B^2)
-------------------
Term
What Is An Average Cost Function Essentially The Same As?
-------------------
Definition
Average Rate of Change
----------------
Term
What Is An Marginal Cost Function Essentially The Same As?
-------------------
Definition
Instantaneous Rate of Change
-------------
Term
What is A Tangent Line?
--------------
Definition
A line that touches a function at a specific point
--------------
Term
Instantaneous Rate of Change is The Same As The Following......
--------------------
Definition
Derivative
---------------
Slope of the tangent line to the curve at point "R" when x=a
------------------
Term
Average Rate of Change Is The Same As The Following............
----------------------
Definition
Slope
-------------------
Term
How Do You Find The Slope Of The Tangent Line of A Function?
-----------------------------
Definition
1.) You Find Instantaneous Rate of Change of The Function which equals the slope
----------------
2.) The value of "x" is already defined
----------------
3.) Use the "x" value of the function to solve for the "y" value
-----------------------
4.) Solve for the formula of the line
---------------
Term
If you know the "x" value of a function how do you find the "y" value?
------------------------------
Definition
Plug in the value of "x" for "x" in the function and solve for "y"
----------------
Term
If you know one point, and the slope, how do you solve for the formula of the line?
-------------------------
Definition
y-y1=m(x-x1)
--------------
Term
What is Short Hand For Instantaneous Rate of Change?
-------------------
Definition
f^1(x) aka f prime x
----------------
Supporting users have an ad free experience!